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DETECT workflow
The goal of DETECT is to assess geological leakage

risks related to fault and fractures in caprocks
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WP2 - Fracture flow, mineralisation, clay swelling

injection

Obijectives B '
= Pressure: Identify and analyse factors controlling er
fracture flow as a function of pore pressure, confining st
stress, mineralogy or strength parameters e
« Clay swelling: Significantly improve fundamental -
understanding of the impact of CO, induced T
expansion of swelling clays in fractures e ’
= Mineralisation: Determine effects of CO,-induced — ’
water-rock interactions on transport through fractures L e
Collaboration

= Heriot-Watt University, RWTH Aachen University, Shell

R WP2.T1. Fracture WP2.T2 WP2.T3. Clay
Flow: stress- Mineralisation: Swelling: c|c?/ swelling
ermeobiii relations mineralisation in affecting fracture
P ty fractures apertures



Field work to obtain fracture networks in caprock analogues

m Carmel shale, Green River, Utah core drilled in 2012
m Tight carbonates, Crato, Brazil [
m Opalinus shale from Mont Terri

m Nash Point Shale, Bristol Channel

m Mercia mudrock, Midlands and Bristol Channel, UK
m Kimmeridge Shale, Kimmeridge, UK

m Konusdalen, Svalbard, Norway
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WP2.1. - Stressed Permeability Concept
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WP2.1. - Fluid Flow in Fractures

Simplified View of a Fracture
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WP2.1. - Surface Roughness
Analysis
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WP2.1. - Controlled Roughness - Experiments
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Micro-CT Insights
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WP2.2 —Mineralization

“Depressurization and consequent degassing of CO,-saturated fluids leaking through fractures in cap

rocks has often been suggested to result in self-sealing through carbonate precipitation”

» concept was confirmed numerically

+ but substantial uncertainty on mechanisms, many essential parameters controlling locus, volume and speed of
mineralization

+ very little experimental data available to verify or refine geochemical models of carbonate precipitation and

dissolution during fracture flow

Key issues:
m Effect of saturation

m Effect of mineralogy — crystal seeds — Porosity - Permeability

m Effect of flow rate



WP2.2 - Mineralization - 3 staged experiments

1. Capillary systems

Temperature control
Pump 1 Oven 1 Oven2 /7 N _
P Dissolution Precipitation (—z—— Narrow diameter
transparent capillaries
Flow control => Constant pressure
gradient
Ho0 Pump 2 => Visual observations
~ 1
“ m Variation of
— =‘ 1] m Crystal system
Continuous monitorrin m Saturation
Vacuum T[T T3] (T4 of pressure and 9
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WP2.2 Mineralization - 3 staged experiments

2. Glass bead column systems
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WP2.2 Mineralization - 3 staged experiments

2. Glass bead column systems

m Experiment 1
m 100% Glass Beads (100-200um)
m 1-1 mixture of 30mmol/l CaCl, and 30mmol/l NaHCO;; 30°C
m 13 days

m Experiment 2
m 20wt% Calcite (100-200um), 80wt% Glass Beads (100-200um)
m 1-1 mixture of 30mmol/| CaCl, and 30mmol/l NaHCO;; 30°C
m 16 days

m Experiment 3
m Lower 100% GBs — Middle 100% Calcite — Top 100% GBs
m 1-1 mixture of 30mmol/| CaCl, and 30mmol/l NaHCO;; 30°C
m <4 days




WP2.2 — Mineralization

2. Glass bead column systems
Porosity (CT)

m Before m After

Permeability

GB Top 25 17
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Bottom
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28 18

m Preferential flow &
cementation path
(~ fracture)

m Effect of calcite: most

cementation af first

Cemented contact

100-200 um calcite zone in blue

0O 15 30 45



WP2.2 —Mineralization
3. Fractured rock plugs

Pump 1

— Flow control

NaHCO Pump 2
N~ 1 |

Plugs of differing mineralogy with

fractures

T ' Pressure transducers

m Initial equilibration with synthetic pore water (PHREEQC)



WP2.2 —Mineralization

Calcite
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1.00E-07

m Steady Mineralization

m Permeability ~ 5 * 107-17 m? m Permeability ~ 5*107-18 m?

m Fracture flow = Matrix flow

Hydraulic aperture (m) - Log-scale

1.00E-08
-1.00E+03 3.00E+03 7.00E+03 1.10E+04 1.50E+04

Volume (m?3)



WP2.2 - Mineralization — Utah-Carmel (7% smectite) [ permeabilities are several order

of magnitudes lower than the dry
100% measurements
m Klinkenberg + Clay hydration

(see also e.g. Duan et al., 2020)

m Fast Mineralization (Grain sizel)
m Transition to matrix flow

m Permeability < 107-17m?

m Fluid switch

Permeability

v

m Clay hydration effect Time



WP2.2 - Reactive Flow Experiments

mCarbonate precipitation can have a significant effect on fracture sealing
mFluid Saturation determines

mif nucleation / crystal growth is likely

m crystal growth rates

mAvailability of seeds / nucleation sites (e.g. carbonate) determines crystal growth

rates
m caprock mineralogy and grain sizes are determining factors

mFracture flow rate determines precipitation rates and locations

20



WP2.3. - Background - Swelling clays

Bi-hydrated state
Mono-hydrated state (~14.5-15.8 A)

m Swelling clays (e.g. smectite) are (~11.8-12.9 A)

Dehydrated state
(~9.6-10.7 A)

abundant in many sealing formations
m T-O-T layer structure plus charge

balancing cations (Na*, Ca?)

001

m What happens upon exposure to CO2 | | =

m Which parameters control clay-CO,

interaction?®

Ferrage et al. (2016)
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WP2.3. - Background - Swelling clays

H,0 content [mmol / g clay]

m Swelling clays expand in the presence of water and are compressed when a load is applied

m Similar expansion was observed in the presence of CO2
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WP2.3. - High-pressure CO, sorption

Obijective: accurately determine controls of CO, uptake on expandable clays

= CO,-pressure, water content, charge balancing cations (Na*, Ca?+)

1.4 T
T=45°C
Ca?*- SWy-2 blank corrected
1.2
&® o
0 090 o
>10 | 0
3 ’ .0
= 0,20
O 0.8 N
£ L0
£ e o Q
) 0.GQ
X 06 [O o
g O% ® oy ke
3
8 0.4 ‘ 32% RH
/
47 % RH
(2 Q. 65 % RH
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/ dry
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WP2.3. - High-pressure CO, sorption

Obijective: accurately determine controls of CO, uptake on expandable clays

= CO,-pressure, water content, charge balancing cations (Na*, Ca?+)

1.4 I
Ca?**- S|\ Na*- SWy-2 blank corrected

1.2 Cp 12

14

T=45°C

=
o
(@)

CO, uptake [mmol /g clay]
(o]
CO, uptake [mmol / g clay]
o
=

0.2 | 0.2

0 2 0 200 400 600 800 1000
CO, bulk density [kg / m3]
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WP2.3. - High-pressure CO, sorption

Obijective: accurately determine controls of CO, uptake on expandable clays

= CO,-pressure, water content, charge balancing cations (Na+*, Ca?+)
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WP2.3. - Clay swelling at fully saturated conditions

mLong-term flow experiments on
expandable clays at relevant in-situ
conditions

mFlow of dissolved CO, has no
significant effect on permeability and
clay swelling

mClay swelling effects on fault leakage
through a fully saturated caprock must

not be considered for risk analysis

1.6

1.4

Permeability [10-2! m?]
o o o o =
N H (@) (00e] = N

o
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water ‘ water

) +
(5%3@@' Cco,
o®

g
O,
22
<>
brine brine
+
T=45°C CO;,
P, =12 MPa
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constant volume conditions
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WP2.3. - Clay swelling for partially hydrated clays

Apparent swelling stress [MPa]

~

(e)]

ul

o

w

N

Na*- SWy-2

e

constant volume conditions

T=45°C
axial, start = 23 MPa
dry sample

CO,-induced clay

swelling

6 8 10 12 14 16
Pore pressure [MPa]

18

mSwelling and flow experiments on
partially saturated clays as a function
of CO, pressure and water content

mCO,-induced clay swelling
m increases with CO, pressure

m does not significantly decrease fluid flow

mClays in caprocks could potentially

swell when partially hydrated
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WP2.3. - Relevance of clay swelling for fractures flow

m CO2-induced clay swelling is unikely as a self-

sealing mechanism in caprock fractures and/or o TressureMPa) o Pressure(MPa)
04 1 1 1 0 1 1 1
matrix Na*
: : : : 2W
m Highest sorption and swelling at hydration states of :
0-1 which typically occurs at depths larger than R R
£ 2 £
planned for CO, storage < IW-2W) | =
m No change in permeability observed under fully g Nhw g
water-saturated conditions %,
. 4 2
m Dry-out effects could decrease hydration to %
ow - 1wW
5

favourable conditions

modified after Bird (1984)
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Fault Attributes and detailed fracture network structure

Fault core Damage zone

< >
- »

’ Y Damage zone Fault core/damage transition zone
X

Fault zone

January 21
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Field work to obtain fracture networks in caprock analogues

ik e st

m Carmel shale, Green River, Utah core drilled in 2012
m Tight carbonates, Crato, Brazil [
m Opalinus shale from Mont Terri

m Nash Point Shale, Bristol Channel

m Mercia mudrock, Midlands and Bristol Channel, UK
m Kimmeridge Shale, Kimmeridge, UK

m Konusdalen, Svalbard, Norway

CARMEL



Mont Terri Underground Laboratory — Main Fault

Mont Terri URL
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Mont Terri Underground Laboratory — Main Fault
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Bagnoud et al. 2016 Nat Com



Window GaO0S8E - Fracture Network
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Outcrop data - FracPaQ
m Information on fault and fracture attributes (i.e., length, orientation) and on geometrical relationships (i.e., density

and connectivity) analysed with FracPaQ (Healy et al., 2017).
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Fracture network — Mont Terri

m Orientation of faults and fracture is coherent in all four windows in the 2 galleries.

m Galleries with more fracture abundance, show a higher spread in fracture lengths.

m Connectivity in all 4 networks is predominately ensured through abutment (Y-nodes), possibly indicating a coeval
formation of the fracture sets.
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Summary and way forward

» Suitable input data is paramount for setting uncertainty limits feeding into upscaled modelling and
risk assessment of fault leakage

- Difficulty is in location of and access to representative case studies providing suitable and non-
weathered outcrops of fault zones hosted in low permeability strata as well as related sample material

» While Mont Terri is an exception, the way forward is analysing combinations of field case studies and
a wide range of caprock sample material for lab testing involving different mineralogy or mechanical
properties

+ We conclude that stress (pore pressure) and chemistry need to be considered in assessing fracture

flow while clay swelling seems to have a minor effect

January 21 36
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