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DETECT workflow

The goal of DETECT is to assess geological leakage

risks related to fault and fractures in caprocks

WP4

Identify active monitoring
barriers relevant for site and
expected leakage rates

Geological Leakage
Risk Assessment

Incorporate all modelling and
monitoring barriers in a
qualitative bowtie risk
assessment framework with
associated quantitative
scenario modelling tool

Modelling results inform
effectiveness of passive
barriers (in seals and
secondary storage units)
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Probabilistic dynamic
simulation using uncertainty
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from numerical up-scaling

Simulate flow in fracture
networks in caprocks
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Characterise fault-fracture
networks using analogue
derived scaling relations: fault
throw-length-frequency
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Outline

m Input data and workflow

m Insights from semi-analytic results and 2D detailed simulations

m Green River application — history match (workflow validation)

m North Sea application — forecast

m Conclusions
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Input data and workflow

fracture response to stress
perm, relperm, Pc
experiments / fine-scale
model / YM correlation

grid, matrix properties
‘standard’ geological
model (Petrel)

background stresses

seismically visible faults
geomechanical model

explicit or painted on grid

) ql) ) s v

all faults
seismic and sub-seismic

2]

fracture network in seals
surface trace, FDZW,
fracture density, topology

VY

Dynamic simulation model (MoReS)

effective (fracture + matrix) leak rates

perm, relperm, Pc
for each cell in seal

Timestep [

o
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(1] Scaling relations for
fault throw-length-
frequency, extracted
from seismic faults
(SGT). Skipped for
Green River

Scaling relations for
FDZW:-throw, fracture
density-distance.
Network connectivity
topological reduction
factor. Green River: from

outcrop and well data




Insight (semi-analytic): Diffusion slows down CO, velocity in fractures
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Insight (2D model): Homogeneous treatment of damage zone, with
careful property upscaling, reproduces explicit fracture modelling

Individual < 200 m .| - ‘
fractures | secondary |
resolved, N reservoir i
diffusion i
into matrix }storage reservoir
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damage zone.... N

100 year top seal BT, same as
e analytic (ot same parameter settings)
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Insight (2D model): Counter-current brine flow dissolves all CO, in 2
reservoir below critical leak rate /above critical permeability
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Green River: Model overview
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wooce LOW flux distribution

Man-made leak path
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m CO2WS55 log water compositional data (Carmel, Navajo)
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Tornado chart for LGWF surface leak rate - LOG10(LGWF surface leak rate [kg/s])
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Green River results:

LGWF area in one of matching realisations

‘Z'.‘Jm.::

CO, in water

1/

gggggggggggggg

11 5myegr |

255m yle | ]O,SOOmye:r -

1 o
*Crystal Geyser_shift
“Crystal_Geysar

Model Measured
- Total:"1.4 kg/s  Total: 0.09 - 6 kg/s

Gcs
Techno|ogies

20000

m After 10,000 year, leak rates stabilised

m Some leakoff into the intermediate reservoirs

m Total surface mass rate matches measurements
m Flux pattern matches measurements qualitatively

m Well log qualitatively matched (not presented here)
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North Sea: Model overview
m Captain Fairway (Outer Moray Firth)

PEof 8 8880404 ¢F

m Relevance (CO, storage capacity)
m Data availability (Goldeneye; basin

models)

m Presence of seismically visible faults
® Dynamic model 50 km x 20 km /
50 km x 4 km (sector)

m Reservoir to seabed

m Primary caprock = Plenus/Rodby

el RT3 =3 03T RAY

m Secondary caprock = Lista

= top of Storage Complex
m 540 MT / 180 MT (sector) CO, injection

Mr d
GEODATA.HGT
M

m Abandoned wells excluded from analysis! |
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North Sea:

Fault & fracture input

m Seismically visible faults

m Present at injection location. ..

m Subseismic faults
m Scaling relations
m Fault length and density
m Fracture damage
zone width
m Fracture density

m Fracture connectivity

m Single-fracture permeability
m Realisations with high-perm fault

damage zone extension into Chalk
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Conclusions

Green River

m DETECT workflow produces credible matches to measured data

North Sea (Captain Fairway)
m DETECT workflow predicts that fault-fracture systems pose only a low threat to containment
m No migration to top secondary seal (Storage Complex boundary) in any realisation

m Migration across primary caprock unlikely

What are effective geological barriers?
m Ductile caprock (low Young’s modulus) — even if fracture networks present, they have low permeability
m Good quality secondary reservoir — even if primary caprock leaks, CO, dissolves near base 2" reservoir

m Good connection of storage reservoir to wider aquifer — main leakage driving force quickly dissipates
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C ¢ The project has been subsidized through the ERANET Cofund ACT (Project no. 271497), the European Commission, the Research Council of Norway, the Rijksdienst voor December 2020
Technologues e . | - !
Ondernemend Nederland, the Bundesministerium fiir Wirtschaft und Energie, and the Department for Business, Energy & Industrial Strategy, UK.




Jeroen Snippe, DETECT WP3 lead

jeroen.snippe@shell.com

Geological Leakage
Risk Assessment

Incorporate all modelling and
monitoring barriers in a
qualitative bowtie risk
assessment framework with
associated quantitative
scenario modelling tool
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Insights: Isothermal is sufficient

m Pruess 2004&2005 TOUGH?2: severe cooling

m Results reproduced in MoReS

m Assumed frac perms/leak rates are extremely high

m Leak rates obtained from DETECT are much smaller

m Application to Green River frac perms/leak rates =
<1°C after 10,000 yr

m Confirmed by semi-analytic approach

— for redlistic leak rates, isothermal is sufficient
m As long as initial T-z profile is incorporated

m Preferable because thermal mode adds complexity
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DETECT application to projects

Process

m Qualitative bowtie. If credible risk — modelling, linking to available monitoring data where available

Minimum input data requirements for quantitative model
m 3D model of primary reservoir, seal, secondary reservoir; or for quick analysis (2D box model) a type log
m Seismic fault set (can be fault traces derived from attributes)
m Scaling relations for fault and fracture distributions
m Those in the North Sea application are widely applicable, but constrain with local data if available
® Young’s modulus of caprock
m P T, stresses as function of depth
m CO, injection rates and locations

® Monitoring data if available

Acceleraiing
£CS
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