DETECT

Determining the risk of CO, leakage along fractures of the primary caprock — FARAGE RSKASSESSMENT
using an integrated monitoring and hydro-mechanical-chemical approach

Single Fracture Scale Modeling
Summary & Key Insights
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DETECT workflow

The goal of DETECT is to assess geological leakage

risks related to fault and fractures in caprocks
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scenario modelling tool
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Single fracture modeling and link to meso-scale

Numerical Up-scaling
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Predicting Mudrock Fracture Permeability

Navier-stokes + numerical
elastic contact mechanics
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LEAKAGE RISK ASSESSMENT

Empirical Fracture Permeability-Stress Modeling
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Predicting Mudrock Fracture Permeability
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LEAKAGE RISK ASSESSMENT

Numerical Fracture Permeability-Stress Modeling
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Numerical Modelling of Single Phase Fracture Permeability
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m Modified local (gridblock) cubic law computes permeability m Linear-elasfic model

accounting for tortuosity due to fracture roughness
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Comparison of empirical, numerical & experimental stress-
permeability

Mm-scale 3D imaging of fracture
surfaces using digital microscope (YHX-
6000) and photogrammetry
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Key Learnings

m Accurate mapping of fracture surface topography using photogrammetry

@ Carmel Fm.

m Good agreement between numerical hydromechanical simulations obtained 1

—Empirical
by adjusting mating of fracture surfaces —Nu:'lerical (stokes)
m Darcy flow model and analytical contact mechanics under-estimates “ ® e — —Numerical (Darcy)
fracture compressibility oo1 |
m Empirical model may overestimate fracture permeability at low stresses
m For low stiffness rocks modeling approaches tend to underestimate fracture o ; 1:0 s 2 25
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INTEGRATED GEOLOGICAL CO,
LEAKAGE RISK ASSESSMENT

Single Fracture Scale: Two Phase Relative Permeability
Numerical Modeling




CO,-brine relative permeability
in rough fractures
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Key questions | 1 1
m Do fine fractures exhibit capillarity in small apertures? Fe=Fw -k =Y (R_l t R_z)
m How does fracture roughness and a heterogenous a o
aperture field impact relative permeabilities? Ry = 2 cos O K w
m What is the impact of viscous versus capillary forces? Contactangle
m How does the relative permeability evolve during fracture
closure/opening?
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Synthetic fracture surfaces of varying roughness

D=14 D= 2.0

Di=16 Di=18

Numerically Derived Relative
Permeability

JRC=37 JRC=47 JRC=46.3
. . Di=22 Di=24 D = 2. Di=28
Synthetic fracture surfaces of varying roughness : : e ‘
7 RF8 RF9
Fracture A
Fracture Plane
Plane '
\\ I'Ig-
- — 4
g
‘[ 2 O——11 RC=138 RC=20.2 RC=27.3 RC = 34.1
a Matrix
g z z
L — T_» T—’ T
7 X Y
Y
X Parameter state dependent
; _ Relative Permeability Kownw  relative permeability model
(e I(rw or Kr nw . ] 1
contact angle ! e -
-

. . . 08 | - 0.9 | :
interfacial tslslon / local aperture on | , os | Increosmg
N wml - il I

e F-————— P e model: Kr,w |
: 04 F - - X model: Kr,nw " /
| . 03 _.-’ L
- Capillary Pressure ol | o3
1 e 04
) 01 f
' 7 | i 1 { 03 |
0'\ 1 SW 000.0 0.2 0.4 0.6 0.8 1.0 02 /
S 5 ||
Swr w 0.1
i 0 el
0 0.2 0.4 0.6 0.8
T
8 [ 8 LZ‘ = S‘W
In-plane . L. i
curvature . 4 Numerical Simulation

Copyright of Shell Global Solutions International B.V. 15




Capillary no. velocity pressure/drop
o one Increasing roughness Ca = [(u-v)/IFT] o« AP
Relatlve permeablllty curves > viscosity interfacial tension
RF1 ‘ RF2 RF3 RF4 RF5 RF6 RF7 RF8 RF9

Wetting phase

residual
dooint k exponent 1 .
en PO'”\ r saturation N\ yd s | | .
1 AN ncreasing
k — k ] Sw = Swr . AN
rw = trmaxw "\ e ¢ or T AP Ca 01 |
wsS wr 06 \\
satiated saturation — Kewaw 0 1 K
04 AN /
Non-wetting phase rl 03 | / / 001 |
k =k Snw T Snwr 02 | >
raw — “rmaxnw S IS o1 | e % \\
nws nwr s
0 — St : 0.001 L ' ! !
0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8

Copyright of Shell Global Solutions International B.V.




Impact of fracture closure on relative permeability
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Key Learnings

m CO,-brine relative permeability depends strongly fracture roughness,
capillary number and fracture closure

m Low capillary number or high closure leads to increase in capillarity,
greater water trapping, higher phase interference and lower CO,
relative permeability

m Capillary barrier behavior of fractures are sensitive to fracture
roughness and closure

Copyright of Shell Global Solutions International B.V. 17



D ETE CT

2
LEAKAGE RISK ASSESSMENT

Reactive Transport Modeling
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Surface and near-
surface CO,

degassing and

mineralization

CO, leakage & fracture
mineralization

Key questions
m Will CO,-brine-mineral reactions lead

to fracture opening or closing
injection

behavior?

m What mechanisms drive fracture '- { — A sy

closure (e.g. coupled mineral

reactions, degassing) and under what
conditions?

m What are realistic fracture closure

rage reservoir

ﬁ mesca | eS? : 4 advective/diffusive

| { leakage along a fault

m Can constitutive models be developed

G aquifer flow direction

<«—— advection/capillary trapping ‘\"b

that allow reactive process at smalll

Ao diffusion \\Qoo

and meso-scale to be capture in

large-scale models?
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® Barnett

® Marcellus

® Haynesville
O Fayettville

Fluid rock reactions in mudrock fractures B

Fracture Mineralization

Asala et al 2016

Siliceous
mudrocks
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2.5D Reactive Transport Model

Reactive Fluid Flow in Rough Fractures

® Mineralization in fracture plane coupled to reactive transport in fracture walls
m Mixed kinetic-diffusion controlled model for reactions in wall-rock

m 2.5D model incorporates diffusive transport in fracture wall in the kinetic

expression
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c.f. Deng et al. 2016
Reactive SUI"FOCE ared

Apxn = (2 ’ Adiff (1= @roci) * mo)/kgHZO

Frocture constant pressure boundary

Plane i !'F;'?‘x":" ’.
/\.‘ “ ._.-’%_' . ‘_

—
uo!paJ !G MOH

‘. 5‘». }*—g.;:‘:-

cons&mt pressure boundary

\
\

Reaction front propagation

g

i dy bllmlf

Y
L J

.
Lma g

L
L

Matrix

L 4

™~

Copyright of Shell Global Solutions International B.V. 21



Residence time (min)

5 mm

Single Phase Reactive Transport Model —

Results
m Fracture opening on closing behavior depends on fluid residence

time

m Rate of fracture mineralization depends on flow rate

m Fracture porosity-permeability evolution impacted by fracture
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5m
Multiphase Reactive Transport Modelling
Aquifer |
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Key Learnings P2 ~ P1 n'r' Q
m Silicate mineral reactions drive fracture closure & retard CO, leakage rates by consuming CO, "

o
%
"J
2

m Fracture closure sensitive to fluid flow rates, diffusion rates, mineralogy and fracture surface properties co, lbrlne

m Two phase flow systems reduce fracture closure rates by lowering water flux and generate counter

current flows without significant reservoir overpressure o P2
Reservoir

m Realistic fracture closure times for investigated mineralogies are on order of 100 to 1000 years

m Simulations are computationally intensive — limits ability to investigate large parameter space
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DETECT workflow

The goal of DETECT is to assess geological leakage

risks related to fault and fractures in caprocks
WP4
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barriers relevant for site and
expected leakage rates

Geological Leakage
Risk Assessment

Incorporate all modelling and
monitoring barriers in a
qualitative bowtie risk
assessment framework with
associated quantitative
scenario modelling tool

Modelling results inform
effectiveness of passive
barriers (in seals and
secondary storage units)
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Probabilistic dynamic
simulation using uncertainty
ranges on all (parametrized)

controls

Estimation of leakage rate
distribution and likelihood at
each caprock in CO, storage

complex

== Scaling relations based on
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Experimentation and numerical
modeling to characterise single
fracture processes

Hydromechanical coupling
using lab-derived stress-
permeability relations and
analytical stress-state model

fracture

| I aperture

Effective fracture + matrix
vertical permeability, RLP, CPR
for each cell in seal derived

from numerical up-scaling
matrix
micropores

Simulate flow in fracture

networks in caprocks Quantifying the impact of

e smalll-scale physics on CO,-
meso/fine-scale modelling & brine flow at fine-scale

analogues

Characterise background
stresses and log-derived rock
transport and geomechanical
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058214 networks using analogue
derived scaling relations: fault
throw-length-frequency
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